Multi Sensor Array

Dr. Christopher Immer

Dynacs, Inc.

Kennedy Space Center

The Motivating Problem

- As of May 1987 there were 2519 pressure transducers installed at the Space Shuttle Pads
- Each pressure transducer requires a calibration on average every 17 months.
- Calibration requires many man hours
- Many times when a sensor is pulled to be calibrated, its calibration is within spec and no action need be taken
- cycle expires? How can you ensure that sensor is in calibration? What is to ensure that calibration doesn't shift before it's
- To calibrate, a transducer is compared with another "standard" transducer

MSA Algorithm

- Put many sensors in where one would normally be
- Compare each element with every other
- "bad" Mathematically calculate weights for each element to determine which are "good" and which are
- Need to do more than mean, standard deviation
- Need something like a mode, or most common value, that works for continuous functions

Occurrences

Mean Vs. Mode

For what type of sensors will the MSA work?

- Elements in the cluster MUST be exposed to the exact same phenomenon
- For this reason, MEMS is attractive due to small size, close proximity: less likelihood for phenomenon gradients
- Sensors must all fail in different ways, algorithm cannot determine failure if all sensor drift exactly the same
- No Systematic (common) error
- it's sensor drift or phenomenon drift? worst case is when a sensor drifts. How do you know if We would rather have all out sensor failure instead of drift:

How Do you Test the MSA?

- way? How do you get sensors to fail in a natural
- MSA Algorithm has an analytical proof that presented here) algorithm performs correctly (Not to be
- Monte Carlo Simulation (Theoretical)
- Accelerated Life Testing (Actual Devices)

Monte Carlo Simulation of MSA Algorithm

- Each element is a device with a normally distributed random error of $\pm 1\%$
- For each element an exponentially distributed random lifetime is generated (with mean 5000)
- are changed by ±10% After that lifetime has expired, the sensor average and s.d.
- Another lifetime is generated for that sensor
- Process repeats
- Experiment ends when there are determined by be less than 3 reliable sensors left
- Each point you see represents 20 experiments

Cluster Lifetime [% of single element lifetime]

Monte Carlo Simulation

Cluster Lifetime vs. Elements in Cluster

Cluster Lifetime [% of single element lifetime]

Monte Carlo Simulatic

Cluster Lifetime vs. Rejection Criteria

Accelerated Life Testing

- some particular function) Elevated temperature equates to longer duration time (by
- Allows you to increase likelihood of "natural" failure or

calibration shift

- Surface Mount Pressure Sensors, 15 PSIA range Sensors Selected: Lucas Novasensor NPP-301 Series
- once a day cool to room temperature and take Procedure: Take 8 sensors, heat them to 125 C and hold, "systematic" errors. calibration measurements vs. standard to check measurements of each sensor, once a week, take

Accelerated Life Testing at 125C

Accelerated Life Testing at 125C

Accelerated Life Testing Results

- Sensors have an increasing spread with time
- Sensor cluster average stays approximately the same: no systematic drift
- These sensors behave very similarly to those modeled in the Monte Carlo Simulations
- The Lucas Novasensor pressure sensors have with the MSA algorithm exactly the type of failure modes that work well

MSA Transducer

- 8 Lucas Novasensor elements
- ADC-Multiplexer
- sends results out serial port, stores Microprocessor that does calculations, calibration to engineering units, keeps history of each element

MSA Transducer Picture(s)

Advantages of MSA Transducer

- generally be better than individual elements With weighting/averaging measurement error will
- Real-time estimate of sensor error delivered with each measurement
- Gives feedback to user when calibration is needed
- Measurement error can be traded for extended lifetime (e.g. during mission to Mars)
- By storing cumulative weights the MSA Transducer learns misbehaves, the less it is weighted which elements are good and bad: the more that an element
- Easily applied to any existing sensor(s)

Acknowledgements

- Dr. John Lane
- Anthony Eckhoff, Jose Perotti
- Jeff Reese, Mike Blalock, John Randazzo